A	REV. 00	
Consultoria & Planejamento Ltda		DATA MAR/2017
CLIENTE	MERCADO CEASA	
PROJETO HIDROSSANITÁRIO		
TIPO DE DOCUMENTO MEMÓRIA DE CÁLCULO – ÁGUAS PLUVIAIS		

MEMÓRIA DE CÁLCULO CAPTAÇÃO DAS ÁGUAS PLUVIAIS

	· · ·····	·	,	,
DOO	MAR/2017	EMISSÃO INICIAL	MAN/OA	
R00	WAR/2017	EMISSAO INICIAL	MAYSA	
REV.	DATA	DESCRIÇÃO E / OU FOLHAS ATINGIDAS	ELAB.	APROV.
		DESCRIÇÃO E / OU FOLHAS ATINGIDAS	ELAD.	AFROV.
REVISÕI	ES			

Sumário

I. CA	ALCULO DAS INSTALAÇÕES PLUVIAIS	3
1.1	Critérios de dimensionamento	3
1.2	Dimensionamento	3
1.2	2.1 Condutores Verticais	3
1.2	2.2 Condutores horizontais	5
1.2	2.3 Inspeção	6

1. CALCULO DAS INSTALAÇÕES PLUVIAIS

O Cálculo da Rede de água Pluvial leva em consideração a NBR 10.844/89 sendo que o projeto de instalações de águas pluviais foi elaborado de modo a permitir o rápido escoamento da água coletada na cobertura da edificação até o seu destino final.

1.1 Critérios de dimensionamento

A determinação da intensidade pluviométrica para fins de dimensionamento neste projeto foi realizada a partir de dados coletados no INMET (Instituto Nacional de Meteorologia), no qual foi utilizado o índice pluviométrico 142,17mm/h referente a média anual de 2009, pelo fato de ser a maior média nos últimos 10 anos.

O dimensionamento foi feito adotando-se escoamento de seção com coeficiente de rugosidade de n = 0,011. Para os condutores serão adotadas as especificações da NBR-10844/89.

1.2 Dimensionamento

O cálculo para a vazão de projeto é mostrado a seguir.

$$Q = \frac{i.A}{60}$$

Onde:

Q: Vazão de projeto, em L/s;

i: Intensidade pluviométrica, em mm/h;

A: Área de contribuição da cobertura, em m².

1.2.1 Condutores Verticais

Os condutores verticais serão de PVC, e foram projetados com funil de saída na ligação com as calhas, respeitando o limite mínimo de 70 mm de seção circular do conduto, segundo o item 5.6 (Condutores Verticais) da NBR 10.844/89.

De acordo com a leitura do Ábaco (b) da Figura 03 da NBR 10.844/89 a indicação do dimensionamento dos condutores verticais está indicada na coluna referente ao diâmetro indicado pela NBR, porém por conveniência de projeto foi adotada a tubulação indicada na coluna referente ao diâmetro de projeto.

CONDUTORES VERTICAIS					
TUBO DE QUEDA	BO DE QUEDA RALO HERMÉTICO		ø NBR (mm)	ø PROJETO (mm)	
TQ01	RH01	190,99	75	100	
TQ02	RH02	375,11	75	100	
TQ03	RH03	283,68	75	100	
TQ04	RH04	469,96	75	100	
TQ05	RH05	389,49	75	100	
TQ06	RH06	870,02	75	100	
TQ07	RH07	898,51	75	100	
TQ08	RH08	623,39	75	100	
TQ09	RH09	236,05	75	100	
TQ10	RH10	462,59	75	100	
TQ11	RH11	583,99	75	100	
TQ12	RH12	960,21	75	100	
TQ13	RH13	1494,79	100	100	
TQ14	RH14	1649,88	100	100	
TQ15	RH15	1476,09	100	100	
TQ16	RH16	917,51	75	100	
TQ17	RH17	639,33	75	100	
TQ18	RH18	653,27	75	100	
TQ19	RH19	658,28	75	100	
TQ20	RH20	333,81	75	100	
TQ21	RH21	340,62	75	100	
TQ22	RH22	341,08	75	100	
TQ23	RH23	341,08	75	100	
TQ24	RH24	340,65	75	100	
TQ25	RH25	333,81	75	100	
TQ26	RH26	277,22	75	100	
TQ27	RH27	366,57	75	100	
TQ28	RH28	78,77	75	100	
TQ29	RH29	399,97	75	100	
TQ30	RH30	480,53	75	100	
TQ31	RH31	623,4	75	100	
TQ32	RH32	898,51	75	100	
TQ33	RH33	870,02	75	100	
TQ34	RH34	236,05	75	100	
TQ35	RH35	462,59	75	100	
TQ36	RH36	583,99	75	100	

Legenda:

TQ: Tubo de Queda; RH: Ralo Hemisférico;

Q: Vazão; Ø: Diâmetro.

1.2.2 Condutores horizontais

Os condutores horizontais foram projetados com material PVC que tem como rugosidade o valor de n=0,011.

CONDUTORES HORIZONTAIS				
TUBO (CAMINHO)	Q (L/min)	ø NBR (mm)	ø PROJETO (mm)	INCLINAÇÃO (%)
PLV 01 (CA01 - 02)	283,68	125	150	0,5
PLV 01 (CA02-03)	658,79	150	150	0,5
PLV 02 (CA03- RQ)	1128,75	200	200	0,5
PLV 03 (CA04-05)	1563,6	250	250	0,5
PLV 04 (CA05-06)	1973,09	250	250	0,5
PLV 05 (CA06-07)	2871,6	300	300	0,5
PLV 06 (CA07-08)	4211,6	300	300	0,5
PLV 07 (CA08-RA)	4211,58	300	300	0,5
PLV 08 (CA09-10)	341,08	125	150	0,5
PLV 09 (CA10-11)	682,16	200	200	0,5
PLV 10 (CA11-12)	1015,97	200	200	0,5
PLV 11 (CA12-13)	1015,97	200	200	0,5
PLV 12 (CA13-14)	1599,96	250	250	0,5
PLV 13 (CA14-15)	2062,55	250	250	0,5
PLV 14 (CA15-RQ)	2298,6	250	250	0,5
PLV 15 (CA16-17)	341,08	125	150	0,5
PLV 16 (CA17-18)	681,73	200	200	0,5
PLV 17(CA18-19)	1015,54	200	200	0,5
PLV 18 (CA19-20)	1015,54	200	200	0,5
PLV 19 (CA20-21)	1251,59	200	200	0,5
PLV 20 (CA21-22)	1714,18	250	250	0,5
PLV 21 (CA22-RQ)	2298,17	250	250	0,5
PLV 22 (CA23-25)	78,77	75	150	0,5
PLV 23 (CA24-25)	277,22	125	150	0,5
PLV 24 (CA25-26)	355,99	125	150	0,5
PLV 25 (CA26-29)	355,99	125	150	0,5
PLV 26 (CA27-28)	1350,55	250	250	0,5
PLV 27 (CA28-29)	2249,06	250	250	0,5
PLV 28 (CA29-30)	3005,02	300	300	0,5
PLV 29 (CA30-RA)	4545,93	300	300	1
PLV 30 (CA31-32)	2134,12	250	250	0,5
PLV 31 (CA32-33)	2134,12	250	250	0,5
PLV 32 (CA33-34)	4437,27	300	300	1
PLV 33 (CA34-PV01)	4437,27	300	300	1
PLV 34 (PV01-02)	6571,64	300	300	2
PLV 35 (PV02-RA)	6571,64	300	300	2

Legenda:

PLV: Pluvial – Tubulação horizontal.

RA: Reservatório de Aproveitamento;

RQ: Reservatório de Quantidade;

CA: Caixa de Areia;

PV: Poço de Visita.

Os diâmetros dos condutores horizontais são compatíveis com as vazões solicitas.

1.2.3 Inspeção

Nas tubulações enterradas, foram previstas caixas de areia sempre que ocorreram conexões com outra tubulação, mudança de declividade, mudança de direção e ainda a cada trecho de 20 m nos percursos retilíneos.

CAIXA DE AREIA		
CAIXA	Q(L/min)	
CA01	283,68	
CA02	658,79	
CA03	1128,75	
CA04	1563,6	
CA05	1973,09	
CA06	2871,6	
CA07	4211,58	
CA08	4211,58	
CA09	341,08	
CA10	682,16	
CA11	1015,97	
CA12	1015,97	
CA13	1599,96	
CA14	2062,55	
CA15	2298,6	
CA16	341,08	
CA17	681,73	
CA18	1015,54	
CA19	1015,54	
CA20	1251,59	
CA21	1714,18	
CA22	2298,17	
CA23	78,77	
CA24	277,22	
CA25	355,99	
CA26	355,99	
CA27	1350,55	
CA28	2249,06	

CA29	3005,02
CA30	4545,93
CA31	2134,12
CA32	2134,12
CA33	4437,27
CA34	4437,27
PV01	6571,64
PV02	6571,64

Legenda:

CA: Caixa de Areia; PV: Poço de Visita.

2 DIMENSIONAMENTO RESERVATÓRIO DE APROVEITAMENTO

O Reservatório de Aproveitamento foi dimensionado utilizando o método de Azevedo Neto presente na NBR 15527/2007.

$$V = 0.042 * P * A * T$$

Sendo:

P: precipitação média anual, expresso em milímetros (mm);

A: valor numérico da área de coleta em projeção, expresso em metros quadrados (m²);

T: valor numérico do número de meses de pouca chuva ou seca;

V: valor numérico do volume de água aproveitável e o volume de água do reservatório, expresso em litros (L).

$$V = 0.042 * 142.17 * 4897.23 * 5$$

$$V = 146210, 2 L$$

$$V = 146, 21m^3$$

Em projeto o Reservatório de Aproveitamento possui <u>9m de comprimento, 6m</u> de largura e 2,75m de profundidade.

$$V = 9 * 6 * 2,75 = 148,50m^3$$

3 DIMENSIONAMENTO DA BOMBA

O dimensionamento das bombas para o recalque da água que extravasar do Reservatório de Aproveitamento que possui 47m³ para a rede pública existente foi feito levando em consideração os seguintes cálculos.

$$Hm = Hf + Hg$$

Sendo:

Hm: Altura manométrica total, em m;

Hf: Somatório de perdas de cargas contínuas (hf-c) e localizadas (hf-l);

Hg: Desnível geométrico.

• Perda de carga contínua:

$$hf - c = J * L$$

$$J = \frac{10,64 * Q^{1,85}}{C^{1,85} * D^{4,87}}$$

Sendo:

L: comprimento da tubulação, em m;

Q: vazão, em m³/s;

C: coeficiente da perda de carga;

D: diâmetro da tubulação, em m.

$$J = \frac{10,64 * 0,00378^{1,85}}{140^{1,85} * 0.05^{4,87}} = 0.08$$

$$hf - c = 0.08 * 100.55 = 8.19$$

Perda de carga localizada:

$$hf - l = \frac{k * v^2}{2 * g}$$

Sendo:

K: somatório dos coeficientes empíricos das perdas de carga localizada de cada peça;

V: velocidade, em m/s;

g: aceleração da gravidade, em m/s2.

Para o somatório de k, foi levado em consideração as seguintes peças, com seus valores de k respectivos:

02 curvas de 90°: 0,4*2=0,8

Total: 0,8

Para encontrar o valor da velocidade sabe-se que:

$$Q = A * V$$

$$V = \frac{Q}{A}$$

Sendo:

Q: vazão, em m³/s;

A: área da tubulação, em m² - para um tubo de 100mm;

V: velocidade, em m/s.

$$V = \frac{0,00378}{\pi * (\frac{0,05}{2})^2} = 1,95m/s$$

$$hf - l = \frac{0.8 * 1.95^2}{2 * 9.81} = 0.15$$

Sendo assim, o valor da altura manométrica total considerando o desnível geométrico de 6,64 m, será:

$$Hm = (8,19 + 0,15) + 6,64 = 14,98m$$

A escolha da bomba deve levar em consideração à altura manométrica total de 14,98 mca, diâmetro de saída de 50 mm e a vazão de lançamento de 3,78L/s e 13,6m³/h.

De acordo com o catálogo do fornecedor da marca FAMAC a bomba que supre essa necessidade é a Bomba do modelo BC-21PF 2 ½ de 12,5 CV (cavalo vapor).